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Modified Self-Avoiding Walk in a Polymerization Process
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The modified SAW (mSAW) is defined as a statistical method to treat a polymerization process
in a manner similar to that used to treat chains with excluded volume statistics where no two
monomers can occupy the same site in space. Unlike the chains with excluded volume statistics,
the walk algorithm does not terminate when the next walk is an occupied site. Instead the walker
continues along a different direction. Monte Carlo simulations of the random walk are carried out
on both 2D and 3D lattices. Universality classes different from those of the chain with excluded
volume statistics are found. The critical exponents of the mean-square end-to-end distance are
found to be 1.437 (0.005) for 2D and 1.007 (0.004) for 3D, where the figures in the parentheses are
the uncertainties of the last digit. The universality classes are determined from rigorous computer
simulations.
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A self-avoiding walk (SAW) is a well accepted method
used to investigate a homopolymer in a good solvent [1,
2]. This is because this simple model captures the es-
sential physical properties of the system. The SAW has
a random-walk-like feature. It also incorporates the fact
that no two monomers can occupy the same spatial po-
sition. As Amit et al. [3] and Peliti [4] pointed out,
a “true” self-avoiding walk is different from that of the
SAW used in polymer problems. In addition, it is of a
different universality class. The SAW has been shown
to have an upper critical dimensionality of 4. Pereira [5]
has presented a good review of polymer structure from
the viewpoint of the SAW.

One of the fundamental geometrical properties that
characterize a polymer in the polymerization process is
the mean square of the end-to-end distance or the radius
of gyration < R2 > [6]. It is well established that < R2 >
is related to the number of monomers or N steps making
up the chain in the asymptotic limit through the scaling
relation

< R2 >= AN2ν , (1)
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where A depends on the microscopic lattice. The crit-
ical exponent 2ν is, however, universal. The critical ex-
ponent depends only on the spatial dimension D. Due to
the universal character of 2ν, it has been measured to
great accuracy. The theoretical results are given by the
Flory formula [1]

ν ≈
3

D + 2
for (1 ≤ D ≤ 4) (2)

Equations (1) and (2) have been verified for chains of
different topologies in both experimental and computer
simulation studies [2,6–11]. Within the SAW approach,
2ν is equal to 1.500 and 1.200 in 2D and 3D, respectively.

Since it is difficult to study the dynamic properties of
the SAW model analytically, one uses computer simula-
tion. The most versatile technique is the Monte Carlo
(MC) method or statistical sampling technique [12,13].
This method can handle complicated phenomena in a
straightforward fashion, provided the transition proba-
bilities are explicitly defined. A simulation based on
the previously defined SAW or on the chains with ex-
cluded volume model will be referred to in this paper as
a conventional self-avoiding walk or cSAW. The short-
coming of a cSAW is that the probability of randomly
generated walks being self-avoiding decreases exponen-
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tially with chain length. Narasimhan et al. [14] recently
pointed out that this shortcoming prevents the cSAW
from being used to grow maximally compact configu-
rations. This would preclude its use for studying new
problems such as the folding of a protein. To overcome
this shortcoming, they introduced the interacting growth
walk (IGW) model.

The present authors wish to introduce another model
called the modified SAW (mSAW), which will attempt to
overcome the problem of sample attrition as N increases.
The mSAW is similar to the cSAW, except that the
walk algorithm does not terminate when it encounters
an occupied site. Instead, the mSAW continues along
an unoccupied site direction. Also, unlike the “true”
SAW of Amit et al. [3], the mSAW does not only try to
avoid the visited site, but it completely avoids the visited
site. The mSAW is believed to imitate a real world sys-
tem better than the cSAW does. An example for which
our suggested model can well be used is large proteins
[15]. Proteins are considered to be macromolecules hav-
ing large molecular weights. They need to be big enough
to contain certain information in order to have a specific
function [16]. With the cSAW, such molecules with large
molecular weights are not possible because the algorithm
terminates the chain before it gets big enough. However,
with mSAW, such large molecular weight proteins are
possible.

If our model is to be justified from a statistical physics
viewpoint, the concern regarding whether it violates a
detailed balance condition resulting from the “bias ef-
fect” of the ensemble average must be addressed in a
way that is statistically physically relevant. However,
this problem can and should be viewed differently by us-
ing a chaotic-phenomenon-like aspect. Having applied
our model algorithm, we find that our mSAW has an ad-
ditional feature, namely, the nonlinear feedback from the
environment (its historical path or chained monomers)
to keep it walking, which gets higher as time progresses.
When the polymer chain gets longer or the macromolec-
ular protein gets bigger, the path or conformation be-
comes more complex, increasing considerably the chance
of this self (new)monomer-(old)monomer interaction be-
tween the current monomer and the past monomer in
the polymer chain. This “interacting landscape” affects
what the next configuration or the final conformation
will be in an uncertain way. Therefore, this large non-
linear feedback of this complex chain may be a chaotic
phenomenon. What and how this phenomenon occurs
are typically known, but why nature adapts in this is
not know. Hence, when we use the conventional non-
equilibrium statistical mechanism concept via the condi-
tion of detailed balance, the condition ensures that the
Markov process is the Boltzmann probability distribu-
tion that is generated after the system has come to equi-
librium. This may not be the best or most suitable pic-
ture to convince the reader that this model is realistic,
but it is the only one thus far.

In this paper, each monomer is represented as a circle

in 2D and a spherical ball in 3D with a constant bond
length. Six spatial lattice arrangements are investigated:
(1) a 2D square lattice, (2) a 2D hexagonal lattice, (3)
a 3D simple cubic, (4) a 3D body-centered cubic, (5) a
3D face-centered cubic, and (6) a 3D hexagonal close-
packed.

We see in Fig. 1 a square lattice (SL) of open circles
representing the possible coordinates at which each new
monomer can be placed during the polymerization pro-
cess. The walk begins with 2 monomers. The next most
recent monomer to be placed in the chain is the bricked
circle labeled 2. The next position is chosen randomly
from the three nearest neighbor circles as indicated by
the arrows labeled 3a, 3b, and 3c. The fourth nearest
neighbor, labeled 1, is a forbidden walk. The walk ter-
minates only when the assigned N is achieved or when
all the nearest neighbor sites are occupied. The priori
equal probability is conserved because for each new step,
only the unoccupied sites are being reweighed. For ex-
ample, in the 2D square lattice, when there are 3 unoccu-
pied nearest neighbors, the probabilities of walking in the
three directions are equal to 1/3. However, if the walk
encounters a situation where there are only 2 unoccupied
sites, the probability of each direction is 1/2. The end-
to-end distance (R) is recalculated for each walk that is
added to the chain. The mean square of the end-to-end
distance (< R2 >) is averaged over at least 1000 real-
izations. The end-to-end distance distribution (P (R)) is
also calculated for various N in all lattices.

As mentioned earlier, the Flory theory and the cSAW
predict that the scaling laws for 2D and 3D can be fit
with slopes of 1.500 and 1.200, respectively [1, 2, 6–11].
Figure 2 plots < R2 > versus N generated by using the

Fig. 1. Walk on a square lattice. The square lattice
(SL) of open circles represents the possible coordinates where
each new monomer can be placed during the polymerization
process. The walk begins with 2 monomers. The most re-
cent monomer to be placed in the chain is the bricked circle
labeled 2. The next position is chosen randomly from the
three nearest-neighbor unoccupied circles as indicated by the
arrows and labeled 3a, 3b, and 3c. The fourth nearest neigh-
bor, labeled 1, is a forbidden walk.
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Fig. 2. Plots of the mean square of the end-to-end
distance versus the number of monomers in the chain:
(a) generated by using the mSAW for 2D lattices and (b)
generated by using the mSAW for 3D model lattices. Both
the 2D square lattice (�) and hexagonal lattice (©) have
approximately the same slope of 1.437 (0.005). All 3D simple
cubic (�), body-centered cubic (©), face-centered cubic (4),
and hexagonal close-packed (5) lattices have approximately
the same slope of 1.007 (0.004). The mSAW shows a universal
scaling behavior, but deviates from that of the cSAW.

mSAW in 2D and 3D. The universality of the scaling law
based on the Flory relation is found to break down. The
slopes for all of the lattice structures in both 2D and
3D deviate from those of the cSAW. For 2D lattices, the
slopes (Fig. 2(a)) is 1.437 (0.005) instead of 1.500. For
the 3D lattices, the slopes (Fig. 2(b)) of < R2 > versus
N is 1.007 (0.004) instead of 1.200. The simulations on
various lattices structure agree with the data from Domb
et al., Wall and Hioe, and McKenzie [17–19] that for
long walks, the asymptotic behavior is independent of
the lattice structure. Therefore, only a 2D square lattice
and a 3D simple cubic lattice will be mentioned in this
discussion.

The critical exponent 2ν in 2D is less in the mSAW
than in the cSAW by approximately 0.063 (0.005). This
may be due to the fact that with the mSAW, the algo-
rithm allows the chain to be more packed than with the
cSAW. The reason for this is that with the mSAW, the
chain is allowed to continue until there are no more sites

Fig. 3. Probability distribution (P (R)) versus the
end-to-end distance (R) for various numbers of re-
peating units based on the simulations using the mSAW
for the 3D simple cubic lattice. P (R)max is seen to decrease
as the number of repeating units is increased.

available. In 3D, however, the universality class in the
mSAW is much less than that of the cSAW. It is much
closer to that of the random walk (RW), i.e., 1.000. This
results not only from the more closely packed nature of
the algorithm but also from the fact that the mSAW re-
sembles more of the RW behavior. The proposed mSAW
algorithm has freedom similar to that of RW and still
preserves the excluded volume principle. Here, the pro-
posed mSAW algorithm is believed to model a real world
system more closely than the cSAW does.

The probability distribution (P (R)) versus the end-to-
end distance (R) with the mSAW on a 3D simple cubic
lattice is shown in Fig. 3. The result in 2D shows a
trend similar to that in 3D, so it is not shown in the
paper. P (R)max is seen to decrease as the number of
repeating units is increased. This is expected as it is
observed in all random walks.

MC simulations have been used to investigate the
mSAW polymerization model in 2D and 3D lattices. We
measured the simulated end-to-end distance (R) and its
associated probability (P (R)). The mSAW results sug-
gest an asymptotic scaling relation between < R2 > and
N . < R2 > increases with N to a power of 1.437 (0.005)
in 2D and 1.007 (0.004) in 3D. The mSAW model is hy-
pothesized to have a different universality classes; i.e., it
is characterized by scaling exponents different from those
of the cSAW or of the chains with excluded volume.
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